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Q-Ising 

Using a probabilistic approach, we study the parallel dynamics of the Q-Ising 
layered networks for arbitrary Q. By introducing auxiliary thermal fields, we 
express the stochastic dynamics within the gain function formulation of the 
deterministic dynamics. Evolution equations are derived for arbitrary Q at both 
zero and finite temperatures. An explicit analysis of the fixed-point equations is 
carried out for both Q = 3 and Q --*.co. The retrieval properties are discussed in 
terms of the gain parameter, the storage capacity, and the temperature. Using 
the time evolution of the distance between two network configurations, we 
investigate the possibility of microscopic chaos. Chaotic behavior is always 
present for arbitrary finite Q. However, in the limit Q--* oo the existence of 
chaos depends on the parameters of the system. 

KEY WORDS: Layered networks; Q-Ising neurons; parallel dynamics; 
chaotic behavior; probabilistic approach. 

1. INTRODUCTION 

Besides ext remely  di lu ted a symmet r i c  neura l  ne tworks ,  there is ano the r  
class of ne tworks  that  al lows an  exact  t r e a t me n t  of its paral le l  dynamics :  
layered feedforward networks .  ( F o r  a recent  review and  the re levant  
l i tera ture  on  this class of ne tworks  with b i n a r y  n e u r o n s  we refer to ref. 1 
and  the references cited therein.)  The  m a i n  unde r ly ing  reason  is tha t  in 
bo th  types of ne tworks  there are no  feedback loops.  An add i t iona l  p roper ty  
of ext remely  d i lu ted  models  is tha t  an y  finite n u m b e r  of n e u r o n s  have dis- 
j o in t  clusters of ances tors  so that  they are comple te ly  uncorre la ted .  In  
layered models , .however ,  cor re la t ions  a m o n g  the n e u r o n s  do  exist precisely 
because  of this c o m m o n  ances to r  problem.  Never theless  these cor re la t ions  
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can be handled exactly, giving rise to layer-to-layer recursions for the rele- 
vant order parameters determining the system: the main overlap for the 
condensed pattern and the so-called width parameter connected with the 
noncondensed patterns. (~) The latter has been identified explicitly in ref. 2 
as the variance of the residual overlap responsible for the intrinsic noise in 
the dynamics of the main overlap. 

In the present work we consider the parallel dynamics of Q-Ising 
(Q>2) and analog ( Q ~ )  layered neural networks with Hebbian 
couplings between adjacent layers and independently chosen representa- 
tions of patterns on different layers.-We provide an exact solution following 
a probabilistic approach, c3) In particular, employing a signal-to-noise ratio 
analysis based on the law of large numbers (LLN) and the central limit 
theorem (CLT), we derive layer-to-layer evolution equations at zero and at 
finite temperatures T for arbitrary Q. For finite T this requires a nontrivial 
generalisation of the auxiliary thermal fields method used, e.g., in ref. 2 to 
express the stochastic dynamics within the gain function formulation of the 
deterministic dynamics. (For Q = 2 we recover the results of refs. 4-6.) A 
detailed study is presented of the macroscopic structure of the retrieval 
dynamics for Q = 3 and Q ~ ~ .  Furthermore, we also discuss some aspects 
of the deterministic dynamics on the microscopic level. Especially we 
investigate if the distance between two arbitrarily close network configura- 
tions correlated with only one embedded pattern diverges, implying chaotic 
behavior. This extends the results obtained in ref. 7 to arbitrary finite Q 
and Q ~ ~ (analog) layered models. 

Similar problems as outlined above have been treated for extremely 
diluted asymmetric Q-Ising and Q-state Potts models in refs. 8 and 9. 
Where appropriate we compare the results of these studies with the results 
obtained here. The parallel dynamics of Potts networks on layered feed- 
forward architectures has been solved exactly ~l~ using the generating 
function method introduced in ref. 11. 

The rest of this paper is organized as follows. In Section 2 we intro- 
duce the model, its dynamics, and the Hamming distance as a macroscopic 
measure for the retrieval quality of the network. In Section 3 we solve the 
deterministic parallel dynamics for arbitrary Q using the probabilistic 
approach. This leads to recursion relations for the main overlap, the 
activity, and the variance of the residual overlap. The corresponding recur- 
sion relations solving the stochastic parallel dynamics for arbitrary Q are 
derived in Section 4 by introducing the appropriate auxiliary thermal fields. 
Section 5 is devoted to the detailed analysis of the retrieval properties of 
the Q=3  model and the analog model by discussing capacity-gain 
diagrams together with the macroscopic structure (attractors, repellors, 
saddle points) of the dynamics. In Section 6 an explicit analysis in terms of 
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the Hamming distance tells us that chaotic behavior in the sense of diverg- 
ing trajectories mentioned above occurs. For arbitrary finite Q this happens 
in the whole capacity-gain plane, for Q--* oo there exists a dynamical 
transition line toward chaos. Some concluding remarks are contained in 
Section 7. 

2. T H E  M O D E L  

Consider a neural network composed of multistate neurons arranged 
in layers, each layer containing N neurons. A neuron can take values in a 
discrete set 5 a =  { - l = s l < s 2 < - . .  < s Q _ ~ < s e =  +1}. Each neuron in 
layer t is unidirectionally connected to all neurons on layer t + 1. Given a 
configuration aA(t)-= {aj(t)}, j e  A = { 1, 2 ..... N}, the local field hi(~a(t)) 
in neuron i on layer t + 1 is 

hi(~,~(t))= ~ Jij(t+ 1)aj(t) (1) 
j ~ A  

where Ju(t + 1) is the strength of the coupling from neuron j on layer t to 
neuron i on layer t + 1. The state ~a(t + 1) of layer t + 1 is determined by 
the state ~A(t) of the previous layer t according to the transition 
probabilities 

P r [ ~ i ( t + l ) = s k e 6 e [ a A ( t ) ] =  exp{--flei[Sk{~A(t)]} 
Zs~ s, exp{ - f le i  [s I ~A(t)] } 

(2) 

Here the temperature T = f l - ~  measures the noise level, and the energy 
potential e~ [sl ~,~ ] is defined by ~12) 

~, [ s  l nA ] = - �89 [h , (nA)  s - b s  2] (3) 

where b > 0 is the gain parameter of the system. We take parallel updating. 
The configuration of the first layer, ~A(t = 1), is chosen as input. At the 
next time step, the second layer is updated according to the rule (2), and 
so on. At zero temperature, ai(t + 1) takes the value Sk according to 

tri(t ) ~ az(t + 1) = Sk : min e,(sl~ a(t)) = e,(skl~A(t)) (4) 
s ~ .5 a 

which is equiv.alent to using a gain function g(-), 

tr,(t + 1)=  g(h~(aA(t))) 
Q 

g(x) =- ~ Sk[O(b(Sk+x + Sk)--x)--O(b(Sk + Sk--l)--X)] 
k = l  

(5) 



586 Boll6 et al. 

with So = - ~  and se+~=oo.  For finite Q, g(.)  is a step function. For 
Q ~ oo the nature of g(-) depends on the distribution of the states chosen 
at finite Q. For example, if we consider the distributional limit of equidis- 
tant states 5f =6co= {Sk = --1 + 2 ( k - -  1 ) / ( Q -  1), k =  1 ..... Q}, the density 
of states is uniform and the gain function (5) becomes the piecewise linear 
function 

, , fsign(x) if Ix l>2b  (6) 
g~ x l = ~ x/2b otherwise 

The gain parameter b controls the average slope of g(.). 
In this network, we want to store sets of patterns. The representation 

of the patterns on layer t is a collection of independent and identically dis- 
tributed random variables (i.i.d.r.v.) { ~ ( t ) e f f ' } ,  / ~ =  {1,2 ..... p=~N} 
with zero mean and variance A = V a r [ ~ f ( t ) ] .  The synaptic couplings 
between adjacent layers are chosen according to the Hebb rule 

1 
J , j ( t + l ) = ~ - - ~  ~ ~,,u(t+l)~](t) (7) 

The possibility of an analytic treatment of the dynamics mainly stems from 
the independent choice of the representations of the patterns on different 
layers. 

The retrieval quality of the network can be measured by the Hamming 
distance between a stored pattern and the microscopic state of the network 

1 
dn(~u(t), eA(t))=~ ~ [~(t)--ai(t)] 2 

i E A  

(8) 

which naturally introduces the main overlap 

1 
m,~(t)=~--~ ~ ~(t)ai(t) (9) 

i G A  

and the activity of the neurons 

1 
aA(t)=N i~A [O'i(t)]2 (1o) 

In contrast to binary networks, it is necessary to know both the main 
overlap and the activity. 
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3. EXACT SOLUTION OF THE MODEL AT T = 0  

Suppose that the initial data 6.~(1) are a collection of i.i.d.r.v, with 
mean zero, variance Var[tr;(1)] = a0, and correlated with only one stored 
pattern, say the first one (/~ = 1), i.e., 

1 
~ E[r a,(1)] = 6,,., rno, mo>0  (11) 

By the LLN the main overlaps and the activity at t = 1 get the form 

mU(1)  - l im m . ~ ( l ) P r  1 N--~ = A E[r a;(1)] = 6u'lm~ (12) 

a ( 1 ) -  lim a~(1)P=~E[a2(l)]=ao (13) 
N ~  

where the convergence is in probabilityJ TM According to the evolution rule 
(5), the configuration of the second layer is completely determined by the 
local fields {h~(~A(1)), ieA}. Inserting Eq. (7) into Eq. (1), we split the 
local field on site i into a signal term and a noise term 

1 
hi (~A(1) )=r  ~(2)  r.~(1) (14) 

where we have introduced the residual overlaps ~2) 

1 r ~ ( t ) = - -  3" ~/u(t) tri(t ) for /~> 1 (15) 
A ,TA 

The first term on the r.h.s, of Eq. (14) represents the contribution from the 
condensed pattern (/2 = 1) and the second term describes the noise con- 
tribution from the noncondensed patterns (/~> 1). Since the {a(1)} are 
uncorrelated with the {~"(1)} for /~>1, {~(1)a~(1)} is a collection of 
i.i.d.r.v. Therefore, using CLT, the limiting residual overlaps become 

rU(1)- lim r•(l) ~ .A:(0, D(1)) (16) 
N ~ a o  

where D(1)= ao/A and the convergence is in distribution (see, e.g., ref. 13). 
The quantity Jff(0, d) represents a Gaussian random variable with expecta- 
tion 0 and variance d. Although ~ '(1)tr i ( l )  and ~:(1)tr,.(l) are correlated, 
the distributional limits of the residual overlaps { rU(1)} are i.i.d.r.v, because 
the {~(1)} are independentJ 2'14~ Since the {~(2)} are i.i.d.r.v, and inde- 
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pendent of the {r](1)}, the last term in Eq. (14) becomes ~ ( 0 ,  toAD(l)) in 
the limit N--, oo and the {~}  are again i.i.d.r.v. 

To get the main overlaps and the activity on the second layer in the 
limit N ~  oo, we apply the LLN. The main overlaps are given by 

+ - -  ~' ~j~(2)r~(1 m"(2 '=  li~rn~o ~N ~ ~ ( 2 ) g ( ~ ( 2 ,  rn~(l, 1 ,) 

= ~ t ( 2 ) j D z g ( ~ ' ( 2 ) m ' ( 1 ) + [ a A D ( 1 ) ] l / 2 z )  (17) 

where ((---)) stands for the average taken with respect to the distribution 
of the first pattern, and Dz denotes a Gaussian measure, 
Dz = exp( -  �89 2) dz/(2~) '/2. The Gaussian integration comes from the noise 
term associated with the noncondensed patterns. Since g(.) is just a sum of 
step functions, we can perform this integration explicitly, leading to 

1 (( ~ ))  
mU(2)=fu, t~- ~ r ~ Sk{Er f [X , (1 ) ] - -Er f [X ,_ l (1 ) ]}  (18) 

k = l  

where we have introduced 

Erf[x] ~,~ Is =- dt e -'2 (19) 

and 
- ~ l ( t  + 1) ml(t)  + b(sk § l + Sk) 

Xk(t) =-- [2otAD(t)] i/2 (20) 

The activity of the neurons gets the form 

a (2 ) -  lim aA(2) v=~ �89 s~{Erf[Xk(1)]--Erf[Xk_l(1)  ] (21) 
N ~ o o  k 1 

The formulas (18) and (21) are similar to those for the first-step dynamics 
of the recurrent Q-Ising model/8) Since the {a,-(l)} are supposed to be a 
collection of i.i.d.r.v., there is no correlation effect in the main overlap and 
the activity of the second layer. 

For the configuration of the third layer we need to derive the 
statistical distribution of the residual overlaps r~(2): 

r•(2)= 1 x / I v  ( ~  A-------~. ~ ~ ~u(2)g ~u(2)r](1)+~)(2)m~a(I) 
i ~ A  

1 
r r~(1)~ (22) 

/ 
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The gain function g(-) [see Eq. (5)] is a step function that changes its 
value by Sk§ at b(sk+sk+~) ( k =  l,..., Q - l ) .  Therefore, the term 
r r~(1) /x/~ in (22) can play an important role if for some k the rest 
of the argument of g(- ) satisfies 

p 1 E r m~(1)-~ ,r ,~\{l ,ul  

1 
< ~ 1r r~(l)l 

~ (2 )  r~(l ) - b(sk + s, + 1) I 

(23) 

Let us denote by Ik ( k =  1 ..... Q - 1 )  the set of sites satisfying condition 
(23). In the limit N ~  ~ ,  the cardinal numbers of the Ik are given by 

Jim I' l ~ = 2  1~(2)r"(1)l P~[b(sk+Sk+l)--~(2)m'(l)] (24) 

where P~(.) is the probability distribution of 

~o~"(2) - lim ~o~.A(2) (25) 

1 
W~,A(2)- X/~ vE ~{i,/a} r (26) 

We then split the residual overlap r~(2) in two sums 

( 1 ~ ~,(2) rA(l) ) 

+ ~ (2 )  - -  + - -  sign[~U(2) r,~(1)] 
A v/-N ~ 2 2 

(27) 

The term ~ ' (2) r ,~( l ) /x /~  in the argument of g(.)  in the first expression of 
Eq. (27) is left out since it cannot change the value of g(-), by definition of 
the sets Ik. Therefore we can apply CLT on the first term and LLN on the 
second term with the random variable r~(1) fixed in Eq. (27). This yields 

( ))) lim r~(2) g . W  u 0 , ~  do~e'~(~o)g2[r 
N~oo 

Q- I  
+r"(l) ~ (sk+t--sk)((P~[b(sk+sk+~)--~(2)m'(1)])) 

k=l 
(28) 
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Since the distribution of w~'(2) is Gaussian with mean zero and variance 
~AD(1), Eq. (28) gets the form 

rU(2) = limu-~ r'~ (2) ~ "4~' (0' ~ ~-~) 

Q-~ / / e x p [  - X ~ I ) ]  \ \  
+rU(1) ~ (sk+l-s~) (29) 

k=, \ \  [2~AD(1 )],/2// 

The limiting residual overlaps found in (29) are sums of two independent 
Gaussian random variables and hence are again Gaussian. A deviation 
from the standard CLT for i.i.d.r.v, is  caused by the dependence of the 
{~'(2)} and the {ai(2)} and the mutual dependence among the {a;(2)} in 
(15). However, the independence of the {r~(2)} still persists because the 
{r~'(l)} are independent. This independence of the limiting residual over- 
laps {rU(1)} is indeed the main result obtained from Eqs. (18) and (21). 
Since this property is preserved layer by layer, the recursion relations for 
t >  2 can be read off from Eqs. (18) and (21) together with an additional 
recursion relation following from (29) for the variance of the limiting 
residual overlaps D(t) --- Var[rU(t)]: 

rn"(t+l)=6u.,~- ~ r  1) 
k ~  

s~ { Erf[ Xk( t ) ] a ( t+ l )=~  * , 

a(t+ 1) 1 D(t+ 1) - -  4 
A 2n~A 

t Sk (Erf[Xk(t)] - Erf[X k _ ,(t)] } / /  

(30a) 

- Erf[Xk _ ,(t)] } / /  (30b) 

x sk{exp[ - X~(t)] - exp[X~_ ,(t)] (30c) 
k 1 

where we recall (20). We note that the number of independent variables in 
the recursion relations is two, say the variables re(t) and D(t). The initial 
conditions for the recursion relations (30) are m ( 1 ) = m  o and D(1)= ao/A 
[and a(1)= ao]. We remark that the recursion relations (30) generalize the 
results of refs. 4-6 for Q = 2. 

The recursion relations (30) suggest the following formulas for a 
general gain function g(.): 

1 (( f Dz 1)m'(t)  m~( t+l )=fu . l~  ~1(/+ 1) g(~l(t+ 

[otAD(t)] i/2 z)~ x) (31a) + 
/ /  
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a ( t + l ) = f ( f D z g 2 ( ~ ( t + l ) m t ( t ) + [ c t A D ( t ) ] l / Z z ) l l  (31b) 

D(t + 1)= a(/+A 1_.._...~) .~_ 1__ [ << f c ~ A  Dzzg(~(t  + 1) m'(t) 

>>]" + [~tAD(t)] '/~ z) (31c) 

where now ( ( . . . ) )  denotes the average over the distribution of the patterns 
with the density p(~), 

1 

<<f(#) >> --- f dep(#)f(~) (32) 
1 

For example, if we consider uniformly distributed patterns, the density p(.) 
is simply 1/2. In the case of the piecewise linear input-output function (6) 
the relations (31) can be derived through computation of the characteristic 
function for the residual overlaps. They can also be obtained as a limiting 
case of the solution of the model at nonzero temperatures. This is the 
subject of the next section. 

4. EXACT SOLUTION OF THE MODEL AT T # 0  

At finite temperatures, auxiliary thermal fields 121 are introduced to 
express the stochastic dynamics within the gain function formulation of the 
deterministic dynamics. For each i and t, let {~(t)}, 1= 1 ..... Q -  1, be a 
collection of i.i.d.r.v, with joint distribution 

Ft,(x, ..... X o-  l ) = Pr [QN= [ { Ckti( t ) < xt } ] = [ l + Q~l' exp( -- flXl) ] -1 

The transition probability (2) can then be written in the form 

Pr[o' i( t  + I) =skl"A(t)] = Pr [19k {~:(t "~ 1)<~,,ESllhi(~A(t)) ] 

- ei [sk I h,(aA(t))] }] 

(33) 

(34) 

The joint probability density for qi(t) follows from partial derivatives with 
respect to ~b~(t), which yields 

exp[ - f l  Z~---,' ~b~(t)] (35) 
f#[~, ( / ) ]  = flo- ~(a _ 1)! { 1 + E t~ ~ exp[ - fl~bt;(/)] }Q 
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Unfortunately, this straightforward representation is not convenient to deal 
with the Q-Ising dynamics if Q > 2, since the auxiliary thermal fields cannot 
be treated in the same way as the energy potentials in the deterministic 
dynamics. A convenient method to recover this approach is to introduce 
another set of auxiliary fields. To this end, consider for each i and t 
auxiliary thermal fields u ..... ~k,.~ with joint probability 
density 

exp[--flY"kO=l~k(/)] ( Q  ) 
L [ u 1 7 6  {Z~=lexp[--fl~kk(t)]} ~  k ~  Ok (36) 

We observe that this definition leads to the normalization 

for any fixed k~ {1 ..... Q} and an arbitrary function t2(.) of Q - 1  
variables. Given an index k, there is a one-to-one correspondence between 
fa(.  ) and jr a( �9 ). The introduction of (36) yields a third way to describe the 
transition probabilities (2), i.e., 

Pr[ai(t + I ) = sk I (~A(t)] 

= Ev [t  I~I k ~ lh i ( ( l~ ( t ) ) ] -~ (  t + l)--~i[sklh,(a,~(t))]+~bki(t + 1)]) 1 

(38) 

To make the link of the stochastic dynamics with the deterministic 
dynamics in a convenient way we finally observe that for each realization 
of the auxiliary thermal fields u + 1 ) with density.~p(. ), the network state 
evolves according to the deterministic rule 

Q 

tr ,(t+ 1)= ~ Sk 1--I O(e, Es/Ihe(~A(t))] --qJ~(t+ 1) 
k =  1 I ~ k  

- ei [sk I hi((Ll(t))] + ~bki(t + 1)]) 

=- g,c[hi(oA(t))] (39) 

where the local field hi((L~(t)) is given by Eq. (1). In this way the problem 
of deriving recursion relations for T4:0 becomes tractable. 

Consider the same initial conditions as in the zero-temperature case. 
The main overlaps and the activity of the neurons as well as the residual 
overlaps on the first layer are equal to those at zero temperature because 
the effect of the stochastic dynamics does not yet appear on the first layer. 
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The main overlaps and the activity on the second layer at finite 
temperatures get the form 

( 1 + m  y~ mU(2)= ,~,~ ~(2)g,r  ~](2)m~(1) w/~/~E.'a~\ I 
r rU(1)) (40) 

' ( ' ) aa(2)=~.  ~ A gZ v {~(2) r n ~ ( 1 ) + ~ u ~ \ , 2  {~(2)r~(1) (41) 

Since both the limiting residual overlaps {rU(1)} and the auxiliary thermal 
fields {~U,.(2)} are i.i.d.r.v., the main overlaps and the activity in the limit 
N ~ ~ can be computed by applying the LLN. This requires three types 
of averages. First, there is the average over the noise term associated with 
the noncondensed patterns, which, in the limit N ~ ~ ,  is Gaussianly dis- 
tributed with mean zero and variance ~AD(1). Second, the average over 
the auxiliary thermal fields u with the probability density given by 
Eq. (36) can be done explicitly using the relation (38). Third, averaging 
over the condensed pattern, we obtain the main overlaps and the activity 
in the limit N--* oo: 

Sk f Dz ~k(1) (42a) 
k = l  

Q s:ioz-,,(,,ll (42b) 

where we have introduced the notation 

[ ]-' ~k(t)-- 1+ ~. exp( -~{e[s ,  l h ( t + l ) ] - ~ [ s ,  l h ( t+ l ) ] } )  (43) 
I ~ k  

h(t + 1) =- ~l(t + 1 ) m'(t) + [~AD(t) ] ,/2 z (44) 

The recursion relations (42) are again similar to those of the first-step 
dynamics of the recurrent Q-Ising model, cs) 

For the configuration of the third layer, we need to characterize the 
statistical distribution of the residual overlaps r ] ( 2 ) - ( A  x /~)  -~ Z;~A 
~(2)  ai(2) with 

a,(2) =- gv (r rn~(1) + 1__~ 1 ~ r ,r Gu(2) r](1) -I ,v/~ ,~,\l,,u} 
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To this end, consider the characteristic function for the distributional limit 
r~(2) with rU(1) fixed, 

E[exp{ixr"(2)} ] 

( i x  x 2 )u 
= lim l + - - E [ ~ ' ( Z ) a ~ ( 2 ) ]  E[{r -.. 

(46) 

where the average is taken over the random patterns r the noise term 
associated with the noncondensed patterns (except pattern /~), and the 
auxiliary thermal fields ~/i(2). After performing this last average, we expand 
the expectation values in Eq.(46) with respect to the small term 
~'(2) r~(1)/w/-N. We arrive at 

E[exp{ixrU(2)} ] 

I x "  ~ ((O [ [~ z~k(1 ) \ \ 3 ( 4 7  , = exp -- a(2)+ ixr"(1) k~=, sk J Dz 

such that the distribution of the random variable r"(2) reads 

Q 

[otAD(1)]l/2)) (48) 

Including the fact that r"(l)  is also Gaussian with mean zero and variance 
D(1), we find that the variance of r"(2) is finally given by 

a(2) + 1 Q 
(49) 

The mutual independence of the {r"(2)} again persists because {r"(1)} is 
a collection of i.i.d.r.v. Hence, analogously to the T=  0 case, we conclude 
that the recursion relations at finite temperatures are 

i i I O f  II m"(t+l)=fu.l~ ~ l ( t + l )  ~ sk DzSk(t) 
k = l  

0 o,t+l,=((s 
D(t+ 1)= a ( t+  1) + Sk 

(50a) 

(50b) 

Dz Z~,k(t) (50C) 
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where we recall that 3k(t) is given by Eq. (43). One can also derive 
Eqs. (50) through the use of the generating function method, *~'1 which 
resembles the treatment of the Ports model on a layered architectureJ ~~ 

The corresponding recursion relations in the limit Q ~ oo are given by 
Eqs. (50) after replacing the discrete sum over the possible neuron states by 

o --. j ' ,  ds g(s) s" exp{ -/3e[s] h(t + 1)] } 
E s~,~(t) ~_ -i d s - ~ )  ex-~ -- ~-~ ~ ~h-~ + 1-~-}- (51) 

k = l  

;((. ) is the density of the neuron states. For a uniform distribution of states, 
which is the distributional limit of equidistant states, the density g( ')  is 
again simply 1/2. We remark that Eqs. (50) generalize the results of ref. 5 
for arbitrary finite Q and for the limit Q --* or. 

5. ANALYSIS OF THE FIXED-POINT EQUATIONS 

We first consider the case Q = 3, i.e., a neuron can take the values _ 1 
and 0. Each component ~ ( t )  of the stored patterns takes the values _ 1 
and 0 with probabilities A/2, respectively 1 -  A. At zero temperature the 
recursion relations (30) reduce to 

1 
m"(t+ 1)= 6~.1 ~ (Err[X+ (t)] - Eft[X_(t)3) (52a) 

D(t+l)  a( t+l)+ 1____~ e_X21,~) )e_X2oC,i]2 A 2n~A [A(e-X~r - + 2 ( 1 - A  

(52b) 
with 

A {Erfl-X+ ( t ) ]  + Er fEX_(t ) ]  } - (1 - -A )  Erfl-Xo(t)] (53) a(t+ 1)-- = 1---~ 

b+qml(t) X.(t)=[2ctAO(t)]~/2 for.  r/~ {+1, 0 , - 1 }  (54) 

The fixed-point equations can be read off from Eqs. (52) by setting 
rn~(t + 1) =ml(t)=m, D(t + 1)= D(t)= D. 

As is obvious from (4), the gain function reduces to the input-output 
relation of binary networks if b=0 .  Introducing the variable 
x=rn/(2~AD) 1/2 we find that fixed-point equations at b = 0  take the 
reduced from 

= l ~ E r f ( x ) ]  2 2 ( A e _ : + I _ A )  2 (55) 
~ 2L x J - ~  

822/74/3-4-9 
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Equation (55) possesses no solution for ~ > 0 unless the activity of the pat- 
terns A is greater than 1/3. The maximum value of cx at b = 0, ~c(0) ~ 0.269, 
is obtained for A = 1 and it decreases as A gets smaller. For uniform pat- 
terns (A = 2/3) we get ~c(0)~ 0.142. For A = 1, ccc(0 ) is equal to that of the 
layered binary network. (5) We note, however, that the recursion relations 
(52) for b = 0 reduce to those of the corresponding binary network only if 
A = 1 (that is, if the stored patterns take the values +1 only). This 
behavior can be contrasted with the extremely diluted (Q=3) -s ta te  
network, whose corresponding recursion relations become identical to 
those for the binary case at b = 0 regardless of A) 8" ~5) 

At b :~ 0, we have solved the fixed-point equations numerically, and we 
have studied the stability properties of the solutions. The resulting (~, b) 
diagram is shown in Fig. 1. At any (cx, b), Z ' = ( m  =0 ,  D = 0 )  is a stable 
fixed point. At the boundary ~xc(b) a retrieval state R = (m ~ 0, D 4: 0) (dis)- 
appears discontinuously in m. It is an attractor of the dynamics, accom- 
panied by a nonretrieval state NR =- (m ~ 0, D ~- 0), which is a saddle point 
solution to the fixed-point equations. The retrieval quality is measured by 
the Hamming distance (8) between R and the embedded pattern. If the 
network recalls the pattern without error, the Hamming distance is zero. At 
fixed ~, in the retrieval region, the retrieval quality is a nonmonotonous 
function of b. Therefore an optimal b can be determined. The correspond- 
ing line in the (~, b) plane is also displayed in Fig. 1. 

For a sustained activity solution S - - ( m = 0 ,  D > 0 ) ,  Eqs. (52) can be 
reduced to 

l l l  b 2 D=~ -Erf((2eAD),/2)]+-~--~exp(- b~AD) (56, 
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best retrieval quality. Thc structure of the retrieval dynamics is explained: a denotes an 
attractor, s a saddle point, r a rcpcllor. 
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For all 0( > 0  and b < b o =  (2/ge) 1/2, Eq. (56) possesses a pair of nonzero 
solutions independent of A. The solution with the higher D (denoted St) 
is always stable, the one with the smaller D (denoted $2) is a saddle point. 
The transition from St and $2 to Z is again discontinuous. For b>bo ,  
there is a value of c(, indicated by Ors(b) in Fig. 1, below which no nonzero 
solutions to (56) exist. We remark that in the corresponding extremely 
diluted network such a pair of sustained activity solutions exist only if 
c( >~ (b/B)  2 (B ~ 0.576) such that in this case there is, for any b, an 0( interval 
which does not allow a sustained activity state. (8'~5) 

At finite temperatures, the fixed-point equations are read off from 
Eqs. (50). They are again solved numerically. Figure 2 shows the evolution 
of the dynamical (~t, b)diagram with increasing temperature, in particular 
the retrieval boundary ctc(b ) (Fig. 2a) as well as the line of optimal 
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retrieval (Fig. 2b). The retrieval state R (dis)appears discontinuously at the 
boundary O:c(b), where it coalesces with a saddle point NR. The zero solu- 
tion, which is always stable at T =  0, does not exist at finite T. Since the 
thermal noise tends to randomize the neuron states, it is turned into a 
sustained activity solution. At sufficiently low temperatures, the structure of 
the retrieval dynamics is the same as for zero temperature. However, at 
moderate temperatures, there is only one sustained activity solution left, 
which is stable. In general, the dynamical structure of the (Q = 3)-model is 
hardly temperature dependent: there is always an attractor on the line 
m = 0 such that the retrieval state never attracts the whole (m, D) plane. In 
contrast, for the extremely diluted network the retrieval state turns out to 
be the only attractor in the system for appropriately chosen (~t, b). 

Next we turn to the case of analog neurons (Q ---, ~ ). We restrict our 
discussion to a uniform distribution of states and stored patterns (A = 1/3) 
between - 1 and + 1. In this case the gain function is given by Eq. (6) and 
the density functions p( . )  and X(') are 1/2. The fixed-point equations at 
zero temperature follow immediately from Eqs. (31). At b = 0, they can be 
condensed into one equation 

[ ( 1 )  x//-~e-x2-12 Erf2(x) 
9 1 - ~-ix 2 Eft(x) (57) Ct - I - - -  

xJ 2x2 

with x=m/(2ctAD) u2. The maximum value of ct at b = 0  is ctc(0 ) ~ 0.106. 
For general b, the fixed-point equations are solved numerically. The 

resulting (ct, b) diagram is shown in Fig. 3. The zero solution Z is always 
a fixed point. In contrast to the case Q = 3, z is stable only if it is the only 
solution. Otherwise, Z is unstable. At the boundary Ctc(b) a retrieval state 
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R (dis)appears discontinuously in m. It is an attractor of the dynamics, 
accompanied by a nontrieval state NR, which is a saddle point solution to 
the fixed-point equations. Again a line of optimized b at given ~ is dis- 
played in Fig. 3. We observe that there is a qualitative difference from the 
corresponding extremely diluted network. For small b, both systems show 
an increasing storage capacity ctc(b ). However, Ctc(b ) of the layered 
network eventually decreases to zero as b approaches 1/2, whereas in the 
extremely diluted case tic(b) is increasing up to b = 1/2. Furthermore, the 
former shows a first-order transition, while the latter exhibits a second- 
order transition at the retrieval boundary. 

The fixed-point equation for a sustained activity solution S is 

o a O  
A + ~ - i  Erf2 (2~AD)1/2 

with 

2b a=l-(1-otAD'~Erf(.(2o:~-D)l/2) (2~ exp - 2b2"~ ( 
4b2 .] 2b x//-x \ =AD J 

(58) 

(59) 

Equation (58) possesses one nonzero solution for all ct unless b > 1/2. For 
b > 1/2, the value of D decreases as at gets smaller and eventually vanishes 
at as(b)=4b 2 -  1. This means that the transition from S to Z is now 
second order. [The corresponding extremely diluted network also shows a 
continuous transition from the sustained activity state to the zero state 
at 0t=(2b)2.] The solution S is always stable. Consequently, we again 
conclude that R is never the only attractor of the dynamics such that the 
basin of attraction of R is always limited by NR to separate it from the 
attractor S on the axis m = 0. 

The transition at Cts(b ) is very similar to the spin-glass transition in 
the binary network, t~6~ In fact, the gain function (6) is an example of a 
more general sigmoid input-output relation in a network of analog 
neurons. Roughly speaking, the piecewise linear gain function mimics the 
transition probability [1 + tanh(h)]/2 in networks of binary neurons at 
finite temperatures. The role of the temperature is then taken over by.the 
gain parameter b. 

6. C H A O T I C  BEHAVIOR OF THE D Y N A M I C S  

Until now we have described the dynamical properties of a layered 
multistate neural network in terms of macroscopic quantities, viz. the over- 
lap, the activity, and the variance of the residual overlaps. More specifi- 
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cally, we have shown that for appropriately chosen parameters b and ct the 
network functions as an associative memory. It is nevertheless interesting 
to investigate the nature of the deterministic dynamics in the retrieval 
regime on the microscopic level. In this context it is known tT) that a layered 
network of binary neurons exhibits chaotic behavior. As in refs. 7 and 8 we 
use the term "chaotic" in a well-defined sense. The dynamics is called 
chaotic if two network configurations which are initially close in Hamming 
distance and correlated with only one embedded pattern repel each other. 
It is clear that this criterion of diverging trajectories is a microscopic 
property of the network. 

Let us consider two different initial configurations gA(1) and ~a(l) ,  
which are collections of i.i.d.r.v, with mean zero and variance ao and rio, 
respectively. [In the sequel, variables with a tilde are to be understood as 
corresponding to the initial condition ~a(1).] They have a finite projection 
on one pattern, say the first one, they have zero projection on the other 
patterns, and are also mutually correlated. Explicitly, in the limit N ~ 

E [a;(1 ).~j(1 )] = Co6~,j 
E [ ~ ( I )  a,.(1)] =6u.imoA (60) 

By the same reasoning as in the case of a single configuration, the main 
overlap, the activity, and the variance of the residual overlaps for both 
configurations evolve according to Eq. (30) or more generally Eq. (31). 
We thus obtain re(t), a(t), and D(t) as well as the corresponding variables 
with tilde. 

The Hamming distance between ~A(t) and ~,~(t) is given by 

dH[oA(t), 8A(t)] = 

Consequently, to describe the 
it is necessary to know the 
configurations ~A(t) and ~A(t). 

9 
aA(t)+~,t(t)-- N ~ tri(t)~i(t) (61) 

i ~ A  

time evolution of this Hamming distance 
evolution of the correlation between the 

1 C,~(t)=---~ ~ cri(t) ff,(t) (62) 
ir A 

where, according to the evolution rule (5) and Eq. (14), 

1 ai(t+ l ) - g  ~(t+ l)mtA(t) x/c~ u~e,\l + - -  ~u~(t+l)r~(t)) (63) 

We denote this correlation by 
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By the LLN, the correlation on the first layer t = 1 then gets the form 

C(1)~ lim CA(l) Wr E [ t y i ( l ) S i ( 1 ) ] = C  ~ (64) 
N ~ o o  

On layer t + 1, the characteristic function of the noise terms associated with 
the residual overlaps in the expressions for CA(t+ 1) is, in the limit N ~  0% 
given by 

I ( i ~ N N ~  > ~iY )1  lim E exp ~f ( t+ l ) r~ ( t )+- -  ~ { f ( t + l ) f ~ ( t )  (65) 
N - - o o  

/a 1 N / - / V  ,u > 1 

= exp - ~ eAD(t) x 2 - ~ eAD(t) y~ - ~AS(t) xy (66) 

where we have introduced the residual correlation 

S(t) -- e[ru(t)  f"(t)] (67) 

We see that the noise terms are Gaussian random variables with mean zero 
and variance eAD(t) and ~AD(t), respectively, and that they are mutually 
correlated with correlation eAS(t). Applying LLN, the correlation between 
two configurations becomes 

C( t+  1)-= ~-~lim CA(t+l)=((fdwd(o~,(og,~) 

xg[~(t+l)m~(t)+oJ]g[~(t+l)rhl(t)+ch])) (68) 

where 

= e x p {  - -  [ / 3 ( 0  co 2 + D(t )  cb 2 - 2 S ( t )  co&]/2otA[D(t)  r)( t)  - s 2 ( t ) ]  } 

2rectA [D(t) 13(0 - S2(t)] 1/2 

(69) 

We now derive the recursion relation for the quantity S defined in 
(67). First note.that S(t= 1) can easily be calculated because tr;(1) and 
t~j(1) are independent if i#j: 

1 
S(1)=limo~ A ~  ~. E[{~(1)}2]E[tri(1)Si(1)]=Co/A (70) 

l E A  
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We recall that [see Eqs. (26)] in the limit N ~  ~ ,  co,.u.A(t + 1) converges to 
a Gaussian random variable with mean zero and variance o~,4D(t). The dis- 
tributional limits ~o~'(t + 1 ) and ~ ' ( t  + 1 ) are independent for different sites 
i a n d j  because {G'(t + 1)}, v ~ \ { 1 ,  U}, and { ~ ( t  + 1)}, v e ~ \ { 1 ,  U}, are 
independent if ir For i=j, the correlation between og~(t+l)  and 
~ ( t  + t) is given by ~AS(t) such that the joint density for o~(t  + 1) and 
oS,U(t + 1) is exactly t~,(., .) [see Eq. (69)]. 

To obtain the residual correlation S(t + 1 ), it is convenient to separate 
the product rUA(t + 1) F~(t + 1) into two contributions, 

1 r~(t + 1) F,~(t + 1) = A~ ~ EGU(t + 1 )32 ai(t + 1 ) ~,(t + 1 ) 
iEA 

1 +-A-~ ~ ~(t+l)cri(t+l)~U(t+l)ffj(t+l) (71) 
i ~ j  

It is sufficient to calculate the expectation value of the first term in Eq. (71) 

up to the zeroth order in O(l /x /~) .  Doing so, the noise terms related with 
the/~th pattern eventually drop out after averaging over the joint distribu- 
tion ~ , ( . , . ) .  This yields C(t + I)/A. However, the second term in Eq. (71) 
contributes a term of O(1). Taking these remarks into account, we find in 
the limit N--+ oo 

c(t  + 1) s(t) S(t + 1 ) = - - +  
,4 ~,4 [D( , )  z3(t)] '/2 

x ((fDzzg(~'(t+l)m'(t)+[aAD(t)]~/2z)l I 

x I(fD~ 2g(~'(t+ 1)rh ' ( t )+ [aAD(t)]'/2~)l I (72) 

This expression, together with Eq. (68), is our starting point for the 
discussion of the chaotic properties of the microscopic dynamics. 

To this end, we now restrict the initial conditions to the case of two 
configurations having the same projection [m~(t)=gn~(t)] on the first 
pattern and the same activity [a(t)=~(t), and hence D(t)=D(t)]. Since 
for identical configurations ~( t )=~( t )  it is clear that C(t)=a(t) and 
D(t) = S(t), we study the stability of the fixed point D = S to determine 
whether or not the dynamics is chaotic. The recursion relation for D - S is 
easily obtained from Eq. (30c) and Eq. (72), 
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D(t+ 1 ) -  S(t + 1) 

1 
= ~ [-a(t + 1 ) - -C( t+  1)] 

+ D(t) - S(t) 
otAD(t) ((~ Dzzg(~'(t+ l)m'(t)+[ctAD(t)]l/Zz))) z (73) 

Because C(t + 1) also depends on D(t)-S(t) ,  we need to expand C(t + 1) 
with respect to this small quantity. We first consider the case of finite Q. 
Integration over the variable & in Eq. (68) yields 

1 ~ 
C( t+  1)= ~ SkSt((Fkt(t)+Fk_l,/_l(t)--Fk_l.t(t)--Fk.t_l(t)) ) 

2 N//~ kol= l 
(74) 

where we have introduced the short-hand notation 

Fk t(t)= Ix~')dz e_:  E r/D(t) X , ( t ) -  S(t)z'~ 
�9 rI~ [D2(t)_ S2(t)] 1/2) (75) 

with Xk(t) given by Eq. (20). In the limit D(t) - S(t) --, 0 the integral Fk.t(t) 
can be evaluated 

_F'k.t(t ) ~ - ~  { I + Erf[Xk(t)] } - 6k I 
[D2(t) S2(t)] 1/2 

. D(t)x/~ exp[ -X~( / ) ]  

- O ( k - l ) x / ~  {Er f[Xk( t ) ] -Er f[X , ( t ) ]}+O(D-S  ) (76) 

Now from Eqs. (75) and (76), it is straightforward to show (up to leading 
order in D - S )  that 

C(t+ l )~a( t+  l) [D2(t)_S2(t)]m Q-i 
- -  ~ (Sk+, --Sk) 2 ((exp[--X~(t)]))  

2riD(t) k = l 

(77) 

and hence Eq. (73) becomes 

D(t+l )  S ( t+l )  [D2(t)_S2(t)]mQ-i  -- "~ 2 (Sk+l - -Sk)2  ( ( e x p [ -  X2(t)] )) 
2rtAD( t ) k = l 

(78) 

The last term in Eq. (73) drops out in Eq. (78) because it is linear in D - S .  
Equation (78) shows that the fixed point D = S is always unstable for finite 
Q since an arbitrary small deviation from the fixed point will result in a 
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rapid, square-root divergence. This type of divergence has also been found 
in neural networks of binary neurons t7) and in extremely diluted networks 
of Q-Ising neurons, c9~ We note that the gain function g(-) for general Q is 
indeed a generalization of the input-output relation sign (-) for two-state 
networks. Both show a finite number of jumps in their output as the input 
varies, such that the state of a neuron can change at these jumping points 
as a consequence of a small perturbation of the input. Square-root terms 
are essentially contributions from these jumping points. 

Therefore, it is also interesting to note that the coefficient of the r.h.s. 
of Eq. (78) indeed decreases to zero as Q-1. More explicitly, if the possible 
states {Sk} are equally distributed, then for large Q, Eq. (78) reads 

2 [DZ(t) - S2(t)] 1/2 
D ( t + l ) - S ( t + l ) ~ - ~  gAD(t) 

2aAD(t) j // (79) 

This implies that the behavior in the limit Q ~ oo will qualitatively differ 
from that for finite Q. For Q ~ oo and using the piecewise linear gain func- 
tion (6) for uniformly distributed states, we again expand the recursion 
relation for D--S up to leading order starting from Eq. (73). After a lot of 
tedious calculations, we get 

D( t + l ) -- S( t + l ) -- D(t  ) -- S(t ) { [ << Erf [2b + ~ ' ( t + l ) m ' ( t ) l \ \  ] 2 [-'2-~AD-(t-~] I--~ -- i l l  

ff  Erf [-2b + r + 1) m ' ( t ) ]  \ \  ] + \\ h l / /  J +~ 

(8o) 

The leading order in D -  S is now linear, which implies that the fixed point 
D = S can be either stable or unstable depending on the absolute value of 
the coeff• of the r.h.s, of Eq. (80) compared to unity. Figure 3 shows 
the dynamical transition line to the chaotic behavior. The chaotic region is 
relatively smaller than for the extremely diluted networks of analog 
neurons. More specifically, the retrieval dynamics is not chaotic for suf- 
ficiently high b. As expected, the sustained activity regime is always chaotic. 

We note that in contrast to the case of finite Q, there is no square root 
contribution to the recursion for D - S. This is due to the absence of jump- 
ing points in the gain function g(.). 
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For ~--* 0, we can expand the fixed-point equations (30) for the order 
parameters. For finite Q, the Hamming distances read in this limit 

dH(~' ,  ~r) = A + 6 -- 2Arh x / ~  

exp/- • s'+2-+s" r // (81) 

_ _  2 2 
1 ( s k + l - s k )  2 ( ( e x p ( - 2 k ) ) )  (82) 

f f  k ~" [ - -  ~ llfvl "[- b(sk + I "]- Sk)  ] / ( 2 o t a )  1/2 (83) 

where rh and 6 now denote the main overlap and the activity at ct = 0. Since 
)~k is proportional to 1/x/~ and A + ~i - 2Arh is nonnegative, we conclude 
that dH(~ 1, o)~>dH(g, ~). This relation also holds in the limit Q ~  oo, 
although in this case there appear terms linear in ~ [recall Eq. (80)] 
instead of the exponential terms. These relations are a generalization of 
those found in networks of binary neurons, c7) 

7. C O N C L U D I N G  R E M A R K S  

Using a probabilistic approach, we have analyzed the retrieval regime 
of layered networks of multistate neurons starting from the exact solution 
of the dynamics. First, evolution equations have been derived for arbitrary 
Q at both zero and finite temperatures. By introducing the auxiliary ther- 
mal fields in such a way that they can be treated in the same manner as 
the energy potentials, the stochastic dynamics can be formulated within the 
gain function framework of the deterministic dynamics. Next, we have 
investigated in detail the fixed-point equations for Q = 3 and in the limit 
Q--. oo. There are three different types of fixed points, depending on the 
parameters of the model: a retrieval fixed point, a sustained activity fixed 
point, and the trivial fixed point. In contrast to the extremely diluted case, 
the retrieval state is always accompanied by an attractor which has zero 
overlap with the embedded pattern. In all cases under consideration the 
retrieval state disappears discontinuously as the storage capacity ct 
increases. At zero temperature, the transition from the sustained activity 
state to the trivial state for Q = 3 is first order, while for Q ~ oo it is second 
order. Finally, we have tackled the problem of the behavior of the system 
with deterministic dynamics in the configuration space. A type of chaoticity 
in the network trajectories is always present for arbitrary finite Q. 
However, in the case of a piecewise linear gain function there exists a 
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d y n a m i c a l  t r ans i t ion  t o w a r d  chaos  in the (ct, b ) p l a n e .  The  (~t, b) reg ion  

where  chaos  does  occu r  is re la t ively smal le r  t han  in the c o r r e s p o n d i n g  
ex t remely  d i lu ted  ne tworks .  
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